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ABSTRACT 

Let P = x "~ + P n _ l ( y ) x  n-1  ÷ . . .  + Po(y) ,Q = x m + Qrn-2(y )x  m - 2  + 

. "  % Qo(y) belong to K[x, y], where K is a field of characteristic zero. The 

main result of this paper  is the following: Assume that  PzQ~ - P~Q~ = 1. 

Then:* 

(i) K[Qm-2(y) . . . .  , Qo(y)] = K[y], 
(ii) K[P,Q] = K[x,y] if Q = x m + Q~(y)x k + Qr(y)x ~. 

Introduction 

Let K be a field of characteristic zero and let P, Q E K[x ,  y] satisfy the Jacobian 

identity: PxQy - P~Qx -- 1. Such a pair of polynomials is called a Jacobian pair. 

If P = x n + P ~ _ l ( y ) x  n-1 + . . .  + Po(Y), Q = xm + Q m - 2 ( y )  x m - 2  + ' "  + Qo(y) ,  

and m >_ 2, then we have a reduced Jacobian pair. It is easy to see that every 

Jacobian pair can be transformed into a reduced one. In this paper we will be 

interested in special properties of reduced Jacobian pairs. The famous Jacobian 

Conjecture states that  every Jacobian pair generates K[x ,  y]. To the best of my 

knowledge, it is still unproven. 

Perhaps a brief historical note is in order. Let dl = deg P, d2 = deg Q. There 

are proofs of the Jacobian Conjecture for special values of dl and d2. Magnus 

([6], 1955) showed that  the conjecture is true if dl or d2 is prime. Then Nakai 

and Baba ([9], 1977) proved the conjecture if dl or d2 is 4 or dl > d2, dl = 2p and 

* Some of these results were presented at the Luminy Conference on the Polynomial 
Automorphisms in October 1992. 
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p :> 2 is prime. This result was generalized by Appelgate and Onishi ([2], 1985): 

they proved the conjecture for the case when dl or d2 has at most two prime 

factors. This result was reproved by Nagata ([8], 1988). See also Nowicki ([10], 

1988). In 1983 Moh ([7]) showed, using a computer search, that  the conjecture 

is true if both dl and d2 < 100. An excellent review of the problems related to 

the Jacobian Conjecture and of several faulty proofs can be found in [3]. 

In this paper we develop a technique which enables us to prove the Jacobian 

Conjecture in some partial cases and gives a new and promising perspective on 

the general case. The technique is based on so-called Toeplitz sequences. These 

sequences are defined and their properties are established in Section 1, which 

is purely technical and should be mainly used as a reference section. The first 

non-trivial result is obtained in Theorem 2.2: If P, Q is a reduced Jacobian pair, 

then K[Qm-2(y) , ' . ' ,  Q0(y)] = K[y]. So every reduced Jacobian pair determines 

a certain embedding of a line into K m-1. Special properties of this embedding 

are studied in Section 2 and Section 3. Proposition 2.4 establishes necessary 

and sufficient conditions for Q = x m "~- Qm_2(y)x m-2 + ' ' "  + Qo(Y) to have a 

Jacobian mate of x-degree n. (A result in this direction was obtained in [4]. Both 

the result and the technique used are quite different from ours). In Section 3 the 

so-called fundamental system for P, Q is introduced. This system of polynomial 

equations in Qm-2(y) , .  •. ,  Qo(y) has very special properties and contains crucial 

information about the embedding of a line into K m-1 determined by P, Q. The 

main result of Section 3 is that the Jacobian determinant of the fundamental 

system is a non-zero constant. This fact is used in Section 4 to prove a special 

case of the Jacobian Conjecture, which is, I believe, quite a new result (Theorem 

4.1). The proof is based on the results of Section 3 and on the Abhyankar-Moh 

Theorem. Since there exists a result similar to the Abhyankar-Moh Theorem for 

higher-dimensional spaces, it looks very promising to try methods similar to the 

ones used in Section 4 in the general case. 

1. Toeplitz sequences 

Throughout th is  paper K will denote a fixed algebraically closed field of 

characteristic zero. 

Let k be an integer and let r be a non-negative integer. Let 

F = { . . . ,FI ,  F i - I , . . . ,Fk}  
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be a sequence with the following properties: 

(i) The terms Fi belong to K[z~,... Zo]. 

(ii) The sequence F is infinite from the left and terminates at the index k. 

Let Sk,~ denote the K-linear space formed by all such sequences. 

Definition 1.1: A sequence F E Sk,~ is a Toepl i tz  sequence  if the following 

conditions hold for all i > k: 

(i) OF~+____~I _ OFi for 0 <_ j < r, 
OZj+l Ozj 

(ii) OF~ _ i + 2 F.. - ~ J--J--z. OFi+2 
Oz~ r ~ - 2  ~+2 j=o r + 2 J Ozj 

All Toeplitz sequences belonging to Sk,~ form a K-linear subspace Tk,~ of Sk,~. 

We will primarily be interested in a special class of Toeplitz sequences: 

Definition 1.2: A Toeplitz sequence F = { . . . .  Fn . . . .  , Fk} is of  he igh t  n if 

Fn # 0 a n d  F~ = 0 for i > n. 

All Toeplitz sequences of height at most n, belonging to Tk,~ form a K-linear 

subspace T~,~ of Tk,~. Elements of T~,~ will be written in the form {Fn , . . . ,  Fk} 

with the understanding that there are infinitely many zeroes to the left of F~. 

For every pair of integers n > k we define the t r u n c a t i o n  m a p  T~,~: T~,~ 

T~+I, ~ in the obvious way: 

f k + l ,  = 

LEMMA 1.3: KerT~, r --~ K. 

Proof'. Ker T/¢~,~ consists of all elements of T~,~ of the form {0 , . . . ,  0, Fk}. These 

elements are Toeplitz sequences. Therefore: 

(i) OFk _ OFk+l = 0 for j < r. 
Ozj Ozj+l 

(ii) OFk k q- 2 Fk+2 - ~ J---~---z. OFk+2 = O. 
Oz~ = r + 2  r + 2  3 0 z j  

j=o 

Thus Fk E K,  which concludes the proof. 
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PROPOSITION 1.4: ~'~,~ is surjective, 

Proof." We have to prove that  for every Toeplitz sequence {F,~,. . . ,  Fk+l} there 

exists a polynomial Fk E K[z~, . . . ,  Zo] such that the sequence {F,~,. . . ,  Fk+l, Fk} 

is Toeplitz. Set: 

{fj= 
OF~+l for O < j < r ,  Ozj+l 

-- ~ -2.-- z. F~5-2 k+2 F ~ • 0 
f ~ =  ~+2 k+2 j--~o= ~+2 3 o~j " 

Now we have to prove that Ofj/Ozi = OfjOzj .  To do this, we have to consider 

the following two cases: 

CAsEA:  i < r ,  j < r .  

In this case 

and 

O f j _  02Fk+~ O k o~, ] 0 _ _ \o~,+,} _ 02Fk+2 

Ozi Oz~Ozj+l Ozj+x Ozj+l Ozi+xOzj+x 

Ofi 02Fk+l k Oz¢ ] \Ozj+, ] 02Fk+2 

Ozj Ozi+lOzj Ozi+l 

So in this case Ofi/Ozj = Ofj/Oz~. 

CAsEB:  i < r , j = r .  

In this case 

OZi+l OZj+IOZi+I 

Of~ _ k + 20Fk+2 i OFk+2 ~ J--J--z. 02F~+2 
Ozi r + 2 Ozi r + 2 0zi r + 2 30z~Ozj j=0 

k + 2 - i OFk+2 ~ j 02Fk+2 
: . . . .  ~ Z j  • 

r + 2 Ozi r + 2 OziOzj j=0 

On the other hand 

ok 
OZr 

[k--+-~F,,o ~ A-z.°F~--5-~) o , oz, 
02Fk+l O k a,. j = 

Oz~Oz~+l Ozi+l Oz~+x 

k + 30Fk+3 i + 10F~+3 ~ j 02Fk+3 2.. - - Z j  - -  
r + 20zi+l  r + 2 0zi+x r + 2 OzjOzi+l j=0 

k + 2 - i 0Fk+2 (--, j 02Fk+2 Of~ 
r + 2  Oz, zj  - Oz," 
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This concludes the proof  of the fact tha t  O fi/Ozj = Ofj/Ozi for all permissible 

i, j .  There  exists, therefore, a polynomial  Fk E K[z~, . . . ,  z0] so tha t  OFk/Ozi = .fi 

for 0 < i < r. Recalling the definition of the ] i 's ,  we see tha t  { F n , . . . ,  Fk+l,  Fk} 

is a Toeplitz sequence. This concludes the proof. | 

PROPOSITION 1.5: dimT~,~ = n - k + 1. 

Proof  The proof  is by induct ion on n - k: 

(i) n - k = 0 .  
In this case dim T2,~ = 1 since, obviously, dim T~,r ~ K.  

(ii) n - k > 0  and dimT~+l, ~ = n - k .  

In this case we have a sequence of K-l inear  spaces: 

0 ~ Ker rk~,~ --* T '~ ~'~ k,~ ~ Tk+l,r ---* 0. 

This sequence is exact since r~, r is surjective by Proposi t ion 1.4. Then dim T~,r = 

n - k + 1 since d i m K e r  rj¢~,~ = 1 by Lemma 1.3 and d ime+l ,  ~ = n - k by our 

induction hypothesis.  This concludes the proof. | 

Now we are able to const ruct  a convenient basis for T~,r. For s _< n set 

i~+---+io-  1 
1-I [n - t(r + 2)] 

t=0 i~ Z~O. 
Gs,n = Z i~!. . . io!(r + 2) i~+'' '+i° z~ . . .  

2 i t + "  .+(r+2)io=n--s 

Remark: Note tha t  G~,n = 1, G,~-l,n = 0. 

LEMMA 1.6: 

OG~,n = (n - s)G~,, .  
~ ( r  + 2 - j ) z j  Ozj 
j=o 

Proof  Straightforward.  

LEMMA 1.7: 

(--, OGs+~-j+2, .  
OGs,,~ _ n 2 Gs+r-j+2,n - 2.., zi Ozi " 

Ozj r + i=o 

Proof'. Straightforward.  

For n > t > k consider the following sequence: 

n--t 

Bt = { 0 , . . . ,  O, Gt,t, Gk,t}. k~r " " " ' 
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PROPOSITION 1.8: 

Proof'. 

B t is a Toeplitz sequence. k ,r  

(i) OG,+I,_______ A _ OG~,t for j < r. 
0z5+1 Oz 5 

This follows immediately from Lemma 1.7. 

(ii) OGs,t t ~ oqGs+2,t 
= - 2 . . ,  z5 Oz~ 

5=0 

by Lemma 1.7. 

On the other hand, it follows from Lemma 1.6 that  

OGs+2,t = (t - s - 2)G,+2,t. Z ( r  + 2 - j)z5 oz5 
5=0 

This is equivalent to 

5=0 

OG~+2,t _ t - s - 2G~+2,, + E J---J--zOG~+2't 
Oz 5 r ~-2 5 = o r + 2  3 Oz 5 

Therefore 

(9G s , t  _ 

Ozr 
r r - ~  cOGs+2,t t t - s - 2 G s + 2 , t _ E  zj cOzj r + 2 Gs+2,t r + 2 j=0 

S + 2 Gs+2,t_ ~ J 0Gs+2,t 
r + 2 j=o r + 2 zj Ozj 

This concludes the proof. | 

So for given n and k, we can construct n - k  + 1 Toeplitz sequences: B n B n-  1 k , r '  k , r  ' 

. . . ,  B~,~. The height of each one does not exceed n and they are linearly indepen- 

dent over K (see Remark). These sequences, therefore, form a basis for T~,~.~e 

2. Reduced Jacobian pairs 

For a pair of polynomials A, B E K[x, y] let [A, B] denote the Jacobian deter- 

minant A~By - AuB~. The operation [ , ] imposes a Lie-algebra structure on 

g [ x , y ] .  

A pair P, Q E g[z ,  y] is called a J a c o b i a n  pair  if [P, Q] = 1. 
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Definit ion 2.1: 

pair if: 

A Jacobian pair P, Q E K[x ,  y] is called a r e d u c e d  J a c o b i a n  

P = x n + P,~-I(Y)X '~-1 + " "  + Po(Y), 

Q = x m + Q m - 2 ( y ) x  m-2  + ' ' '  + Qo(y)  and m _ > 2 .  

It  is easy to see tha t  every Jacobian pair P, Q with deg Q _> 2 can be brought  to 

this form with the help of several linear and tr iangular  au tomorphisms  of K[x,  y]. 

So in our t rea tment  of the Jacobian Conjecture,  we can concentrate  our a t tent ion 

on reduced Jacobian pairs. 

Let P, Q E K[x ,  y] be a reduced Jacobian pair. It will be convenient to consider 

P as a formal power series in x, including the negative powers: 

p, i \ x n - 1  P = x n +  n - l ( Y )  + ' " +  Po(Y) + P - I ( y ) x  - 1 + ' ' ' .  

We should, of course, keep in mind tha t  P~(y) = 0 for i < 0. Q, on the other  

hand, will be wri t ten in the s tandard  polynomial  form: 

Q =  x ~ + Q ~ _ 2 ( y ) x ~ - 2 + . . . + Q o ( y  ). 

THEOREM 2.2: There  exis t  F~, . . . , F l - m  C K[z,~_2,  . . . , Zo] such that:  

(i) F = { F , ~ , . . . , F l _ m }  C T~_m,m_ 2, 

(ii) P~(y) = F i ( Q m - 2 ( y ) , . . . ,  Qo(y)) ,  2 - m < i < n, 

(iii) F l - m ( Q m - 2 ( y ) , . .  ., Qo(y))  = y / m .  

Proof: First we will prove the following statement:  For every s, 2 - m < s < n, 

there exists a Toeplitz sequence F : {Fn . . . .  , Fs} E T~,m_ 2 such tha t  PI(Y) = 

F i ( Q m - ~ ( y ) , . . . ,  Qo(y))  for s < i < n. 

We will prove this s ta tement  by induct ion on n - s. Note tha t  Pn(Y) = 1 and 

{1} E T~,m_ 2. So our s ta tement  is t rue for s = n. Now assume tha t  it is t rue for 

some s + 1. We will prove tha t  it is then true for s, if s >_ 2 - m. Consider the 

equation [P, Q] = 1. Since, by our convention, P is a power series in x and Q is 

a polynomial ,  we can expand [P, Q] into a power series in x: 

n+m--2 

[P, Q] = Z Ad(Y) 
d-----~ 
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where Ad(y) are some expressions containing the coefficients P~(y), Qj(y) and 

their derivatives. It  is easy to verify that  

m 

Ad(y) -mP~-m+ I(y) + E { ( d -  m + 1 + 3) d-m+l+i(Y)Q,~_j(Y) 
j=2 

- ( m -  j)P~-m+I+j(Y)Qm-j(Y)}. 

Since [P,Q] = 1, we know that  Aa(y) = 0 for d > 0 and Ao(y) = 1. Take 

d = m + s - 1; d > 0 since s > 2 - m. We then obtain the following equation: 

m 

• ~ o  ! • ! (1) raP~(y) = E ( s  + 3) ~+j(Y)Qm-j(Y) - (m - 3)P;+j(y)Qm_j(y). 
j=2 

Here we assume, of course, that  P~+j(y) = 0 for s + j > n. 

We will integrate this equation, using our induction hypothesis. By this hy- 

pothesis there exists a Toeplitz sequence 

{ F , , . . . ,  Fs+l} 6 T:+l,m_ 2 

such that  Ps+j(Y) = Fs+j(Qm-2(y),..., Qo(y)) for j _> 1. Thus 

m OFs+j(Qm_2(y),...,qo(y))O~_k(y ) 
P'+J(y) = F_, Ozm_  

k = 2  

and equation (1) can be rewritten as follows: 

m 

mP~ = E ( s  + j)Fs+j(Qm-2, . . . .  Qo)Q~-j 

(2) j=2 
m 

"~ OF~+j (Qm-2,.. . ,  Qo)Q~-k. 
- E ( m  - j)Qm-j Oz,,_k 

j = 2  k-----2 

Replacing j by k in the first sum and changing the order of summation in the 

second sum, we obtain 

P~ = - -Fs+k(Om-2 , . . . ,Qo)  
k=2 ~" m 

(3) 
- ~ m - J Qm_, OF~+J (Qm_2,. . ., Qo) } Q~_ k. 

j=2 m COZm-k 
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Since the functions F~+j are terms of a Toeplitz sequence, it follows 

Definition 1.1 that  
OFs+j OFs+k 

Therefore 

OZm-k OZm-j 

from 

(4) 

p ~ = ~ - ~ f s + k  F . 
k=2 I ~  ~+k(Qm-2 . . . .  , Qo) 

OF +k } ,  
m - j q m _ ~  ( q m - 2 , . . .  qo)  qm-k .  

j=2 

By Proposition 1.4 there exists F~(zm_2, . . . ,  z0) such that { F n , . . . ,  F~+I, F~} is 

a Toeplitz sequence. Using again Definition 1.1 we obtain 

s + k , @ ,  m - j OFs+k OFs+k-2 _ OFs 
m F~+k - Z..., m Zm-j OZm--j C~Zm--2 OZm--k" 

j=2 

Therefore 

In other words 

/~: = ~ 0 G  
k=2 ozm-k (Q,~-2 , . . . ,  Qo)Q~-k.  

F'~(y) = d G ( Q m - 2 ( y ) ) , . . . ,  Qo(y)) 
dy 

Since Fs is defined up to an additive constant (Lemma 1.3), we obtain that 

P~(y) = Fs(Qm-2(y ) , . . . ,  Qo(y)) and the induction step is concluded. 

So now we have a Toeplitz sequence ( F n , . . . ,  F2-m} such that 

P~(y) -=F~(Qm-2(y) , . . . ,Qo(y) )  f o r 2 - m < i < n .  

Note that Fi(Qm-2(y ) , . . . ,  Qo(y)) = 0 for 2 - m < i < 0. If we apply the same 

method to s = 1 - m, we obtain an analog of equation (1): 

m 

(5) 1 + mt:'~_ m = Z ( 1  - m + ?)Pl-m+jQm-j" ' - (m - 3)" P'l-m+jQm-j. 
j=2 

Integrating equation (5) in the same way as we did before, we obtain 

1 , dFl_m(Qm-2(y ) , . . . ,  Qo(y)) (8) - + PLm(y) = 
m dy 
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o r  

(7) u__ + P~-m(Y)  = Fl-m(Qm-2(y),..., Q0(y))- 
m 

But  P I - m ( Y )  = 0 since m > 2. Therefore  

Y 
F l - m ( Q m - 2 ( y ) , . . . , Q o ( y ) )  = - - .  

m 

This  concludes the proof. | 

Theo rem 2.2 supplies necessary conditions for P, Q to be a reduced Jacob ian  

pair.  In  fact, these conditions are sufficient as well. 

THEOREM 2.3: Set P = x '~ + P n _ l ( y ) x  n-1 + . . .  + Po(Y) and set 

Q = x'~ + Qm-2 (y )  x m - 2  + " " " + Qo(y),  m > 2 .  

Then the following are necessary and sufficient conditions for P, Q to be a Jaco- 

bian pair: 

There exists a Toeplitz sequence { F ~ , . . . ,  F l - m }  with the following properties: 

(i) Pi(Y) = F i ( Q m - 2 ( y ) , . . . , Q o ( y ) )  for 0 < i < n, 

(ii) F i ( Q m - 2 ( y ) , . . . ,  Qo(y))  = 0 for 2 - m _< i < 0, 

(iii) F l - m ( Q m - 2 ( y ) , . . . ,  Qo(y))  = ~m" 

Proof'. The  necessary pa r t  follows f rom Theo rem 2.2. To prove t ha t  the condi- 

t ions are sufficient, we s imply reverse the proof  of Theo rem 2.2 (all s teps in this 

proof  are reversible). This  concludes the proof. II 

Recall  now the basis B'~,~, . . B t k • , k x , ' " ,  Bk,r for T~r  (this basis was cons t ruc ted  

in Section 1). 
n - - $  

B t = { 0 , . . . , 0 ,  G t , t , . . , G k , t } .  

Our  Toepli tz  sequence F = { F n , . . . ,  F l - m }  can be wr i t ten  as a linear combina-  
n 

t ion of the  elements  of this basis: F = ~ t = l - m  e tB~-m,m-2  or, in other  words, 

Fi ~- L ctai , t ,  1 - m < i < n, cn = 1. 
t=i  
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Thus, we obtain  m + n - 1 equations with m + n - 1 indeterminate constants:  

n 

P~(Y) = E c t G i , t ( Q m - 2 ( Y ) ,  . . . , O o ( y ) ) ,  0 < i < n -  1, 
t= i  

n 

0 = ~ c t G ~ , t ( Q m _ 2 ( y ) , . . . , Q o ( y ) ) ,  2 -  m < i < o, 
t= i  

Y =  ~ CtGl -m, t (Qm-2(y)  . . . .  ,Qo(y)) .  
m 

t = l - m  

If  we consider only the last m -  1 equations, we obtain a sys tem of m -  1 equations 

with m + n - 1 indeterminate constants:  

n 

= o, 2 - m  _< i < o, 

(81 

c tGl -m, t (  Qm-2(y) ,  . . . , Oo(y) ) = - - .  
r n  

t = l - m  

PROPOSITION 2.4: Set Q = xm + Q m _ 2 ( y ) x m - 2  + .. " + Q o ( y ) , m  >_ 2. The poly- 

nomial  Q has a monic  in x Jacobian mate  of x-degree n iff there exist constants 

c1_ ,~ , . . . ,  c,~ satisfying the system (8). 

Proo f  

(i) If  such a Jacobian mate  exists, then the existence of the constants  follows 

from Theorem 2.3. 

(ii) Assume tha t  C l - m , . . . , C ,  satisfy system (8). Then  we can define Fi = 
n ~'~t=ictGi,t for i = 1 - m , . . . , n .  These functions form a sequence F = 

{ F , , . . . ,  FI - ,~} .  The sequence F is, obviously, a Toeplitz sequence since F = 

~']~=l-m c t B l - m , m - 2  and t {Bl_m,m_2} form a basis in T n l - - r e , m - - 2 "  

Set now Pi(Y) = F i ( Q m - 2 ( y ) , . . . , Q o ( y ) )  for 0 < i < n and set P = x n + 

P n - I ( y ) x  ~-1 + " "  + Po(Y). Then [P, Q] = 1 by Theorem 2.3. This concludes the 

proof. | 

Remark :  There is another  way of looking at the polynomials  G i , t ( z r , . . . ,  zo) 

(see Section 1). Consider the following polynomial:  

G(x,  z r , . . . , z o )  = x ~+2 + z~x r + . . . +  zo. 

It  is convenient to rewrite it as 

G(x,  z ~ , . . . ,  zo) = x~+2(1 + zrx  -2  + . . .  + ZoX-~-2). 
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Now we can construct some fractional powers of G(x, z , , . . . ,  zo) as formal power 

series in x including negative powers of x: 

t 

(9) Gt/(r+2)= E G"t(zr '""z°)xi"  
i -~ -- oo 

It is easy to see that the coefficients Gi,t appearing in this expansion are identical 

with the polynomials Gi,t defined in Section 1. Let < G t/(r+2) >k denote the 

finite portion of the expansion (9) starting from k: 

t 

(lo) < c ~/(~+~) >~= ~ c~ . , ( z , . . . ,  zo)x ~. 
i = k  

We will call expressions of this form truncated fractional powers of G. 

Returning to Proposition 2.4 we now see that 

Pi(Y) = E ctGi,t(O,,-2(y),.. . ,Qo(y)) and 
t = i  

P(x, y) = P~(y)x ~ = ~_, ~ c,a~,,(Qm-2(y),..., eo(y))x ~ 
i = 0  i = 0  t = i  

n t n 

= Z c, ~ c~,,(Qm_2(y),..., Qo(y))x ~ : ~ c, < Q(x, y)'/m >0. 
t----O i----0 t=O 

Thus P is a linear combination of truncated fractional powers of Q. If we con- 

sider the whole system of equations appearing in Proposition 2.4, we obtain the 

following: 

P(x, y) + Y x  1 - m  = £ Ct < O(x, y)t/m >l-re.  
m 

t-= l - m  

3. T h e  f u n d a m e n t a l  s y s t e m  for P, Q 

Recalling Theorem 2.3, we see that in order for P, Q to be a reduced Jacobian 

pair, the coefficients Qi(y) of Q must satisfy a system of polynomial equations: 

F-I(Qm-2(y) , . . . ,  Qo(y)) = o, 

F2-m(Qm-2(y), . . ., Qo(y) ) = o, 

Fl-m(Qm-2(y), . . ., Qo(y) ) = y/m, 
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where Fi(zm-2, . . . ,  Zo) are terms of a certain Toeplitz sequence. This system 

will be called the fundamental system for the pair P, Q. 

The fundamental system has some very interesting properties. Let 

S ( z m - 2 , . . . ,  Zo) denote the Jacobian matrix 

[o ,1 
OzjJ'  I - r e < i < - 1 ,  O<_j<_m-2 .  

Set S(y) = S(Qm-2(y), . . . ,Qo(y)) and set A = detS(y).  (Both S and S are 

square m - 1 x m - 1 matrices.) 

Let V(y) denote the column vector of derivatives: 

( / v(y)=\ Q:(y) ] 

Differentiating the system (11) with respect to y, we obtain the following matrix 

equation: 

(12) 

0 :(1). 
The immediate consequence of this is: 

LEMMA 3.1: The derivatives Q~m-2(Y),..., Q~o(y) do not vanish simultaneously. 

Proof." Obvious. II 

It is easy to see that  both S(zm-2, . . . ,  zo) and S(y) are Toeplitz matrices. It 

follows immediately from the definition of a Toeplitz sequence. The fact itself 

was the reason for the name "Toeplitz sequence". We will use this fact now. 

THEOREM 3.2: S(y) is an invertible matrix, the entries ors -1 (y) are polynomials 

in y and A = const ~ 0. 

Proof: Let Ai denote the following row vector: 

O'Zm--2 
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We have from Definition 1.1: 

OFi+l ~f, , , 
(i) O~j+l(~4m_2(y) , . . . ,  Qo(y))  = . ( Q m - 2 ( y ) , . . . ,  Oo(y)) ,  0 <_ j < m - 2, 

(ii) ~0--~--F/(Qm_2(y),..., Qo(y))  = i + 2F~+2(Qm_2(y ) , . . . ,  Q0(y)) 
U Z m _  2 m 

m - - 2  . 

j----1 

If i = - 2 ,  then i+2 = 0, and if 1 - m  < i < - 2 ,  then F i + 2 ( Q m - 2 ( y ) , . . . ,  Qo(y))  = m 

0 according to system (11). In any case: 

OFi 
(iii) Ozm-2 ( Q m - 2 ( y ) , . . . ,  Qo(y)) 

r n - - 2  . 

j = O  

m - 2  . 

= -- Z 3 0FI+I . . . ,  Q o ( y ) ) ,  1 - m <_ i < - 1 .  
m Q J ( Y )  o ~ _  (Qm-2(Y) ,  

j = l  j - -1  

Set l0 10 i/ m--2 Qm--2 0 1 
m 

T _ _  • ° • • .  

1 Q1 0 . . . . . .  
m 

Then we obtain from (i) and (iii) tha t  

Ai = A i+IT  . . . . .  A _ I T  - l - i ,  1 -  m < i < - l .  

Consider the column vector 

V = 

G 

It follows from (12) tha t  

A _ I T - I - i v  = 0, for 1 - m < i < - 1 ,  

1 
A _ I T m - 2 V  = - - .  

m 
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Let Bk denote the column vector TkV,  0 < k < m - 2. Set B = ( B 0 , . . . ,  Bin-2)  

- -  the m - 1 x m - 1 matrix,  whose columns are vectors Bk. Then  it is easy to 

see tha t  

( i )  0 ± . 
m 

o" * 

± , 
?Tt 

Therefore A . d e t B  = r __.L_~jm_l 

concludes the proof. | 

and A and de tB  are non-zero constants.  This 

4. S o m e  p a r t i a l  c a se s  

The  last equation of  the fundamental  sys tem (11) implies tha t  

K [ Q m - 2 ( y ) , . . . , Q o ( y ) ]  -- K[y]. Thus, we have an embedding of a line into 

K m-1. We will use this fact in the proof  of the following result (cases (i) and 

(iii)): 

THEOREM 4.1: Let  Q = x m + Q k ( y ) x  k + Q ~ ( y ) x r , m  > k > r. I f  Q has a 

Jacobian mate  P = x n + P n _ l ( y ) x  n-1 + . . .  + Po(Y), then K[P,Q] = K[x,y] .  

Proof." We will consider several cases: 

(i) m = 2 

In this case the result is very simple and well-known. We will give a proof  for 

the sake of completeness. If  m = 2, then Q = x 2 + Q l ( y ) x  + Qo(y).  Using the 
QI(y) 

au tomorphism x -~ x - 2 , y -+ y, Q is reduced to the form x 2 + (~o(Y) and 

the last equat ion of the fundamental  system (11) is F-l (O,o(y) )  = ~2" Therefore 

(~o(Y) = a y  + ~, a C K*,/3 C K.  The rest is obvious. 

(ii) m > 2 ,  r = 0 ,  k > l  

Q = x + Q k ( y ) z  k + Qo(y)  

In this case Q~ = co E K*. Indeed, assume tha t  Q~o(a) = 0 for some a E K.  Then  

Qx(0, a )  = Qy(0, a )  = 0, which is impossible since Q has a Jacobian  mate.  So 

Qo = coy + ~, Q~ = x k -  1 ( m x  m-k  + kQk) ,  Qu = Q~x k + co. Then  the polynomials  

m x  m - k  + kQk and Q~x k + co cannot  have common  zeroes, which easily implies 

tha t  

Resx(mx m-k  + kQk, Q~x k + co) = A E K*.  



316 Y. STEIN Isr. J. Math. 

This resultant is m x m and has the following form: 

m 0 . . .  0 kQk  0 

0 m 0 . . .  0 kQk  
•• .0 

0 . . . 0  

0 . . .  0 m 0 . . . . . . . . .  0 kQk  

Q'k 0 . . .  0 co 

0 . . .  0 Q'k 0 . . . . . . . . .  0 co 

If Q~: ~ 0, then its leading term is, obviously, given by ( kQk)k (Q~)  m - k .  Therefore 

kdeg Qk + (m - k)(deg Qk - 1) = 0 or mdeg Qk - m + k = 0, which is impossible 

since k > 0. Thus Q~ = 0, Qk = ck E K and Q = x m + c a x  k + coy +/3. The rest 

easily follows. 

(iii) m > 2 ,  r = 0 ,  k = l  

Q = x TM + Q l ( y ) x  + Qo(y) ,  Qx = m x  m-1  + Q1, Qy = Q1 + Qo: 

Then, as previously, Resx(Qx, Qy) = A E K*. 

The resultant has the following form: 

m 0 . . .  0 

Q~ Q~ o . . .  

0 Q~ Q~) 0 

Thus 

o . . . . . . . . .  o Q i  

Q1 

0 

Q~ 

(13) f,,irn--1 = m¢4 o + ( - 1 ) m - I Q 1 Q ' ~ - I .  

Let do = degQo, dl = degQ1. Assume first that d l ¢  0,do ~ 0. The last 

equation of (11) implies that  the map y --* (QI(y), Qo(y))  is an embedding of K 1 

into K 2. Then, by the Abhyankar-Moh Theorem (see [1]), either dl divides do or 

do divides dl. On the other hand, from (13), ( m -  1)(do - 1) = dl + ( m -  1)(dl - 1) 

or (m - 1)do = rndl,  which is impossible since m > 2. Therefore either dl = 0 

or do = 0. If do = 0, then dl + (m - 1)(dl - 1) = 0, which is impossible. Thus 
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d l = 0 ,  Q ~ = 0 a n d d 0 = l .  S o Q l = c l E K a n d Q 0 = c 0 y + / ~ , c 0 E K * , ~ E K .  

Hence Q = x TM + c lx  + coy + ~ and the rest easily follows. 

( iv)  m > k > r > 0 

If r > 1, then Q~(0, y) = Qy(0, y) = 0. Therefore r = 1, Q = x 'n + Qkx  k + Qlx .  

Qx = m x  m-1 + k Q k x  k-1 + Q1, Qy = Q'kx k + Q'lx. 

If there exists a E K such that  Q l ( a )  -- 0, then Qx(0, a)  = Qy(0, a)  = 0, which 

is impossible. Thus Q1 = cl E K,  

Q ---- X( xrn-1 "Jr- Q k x  k-1 ÷ el ) ,  Qx -- m x  m-1 + k Q k x  k-1 -4- cl, Qy = Q'kx k. 

! If there exists a E K such that Qk(a )  = O, then Q y ( x , a )  = 0 for every x. 

Hence Q~(x,  a)  cannot have zeroes, which is impossible since m > 2. Therefore 

Qk = cky +/3, ck c K*,  ~ E K .  Hence Q = x m + (cky + ~ )x  ~ + clx.  Consider 

the following automorphism ~- of K[x ,  y]: 

1 
x ckx, - - ( y -  (ckx) - Z). 

ck 

It is easy to see that  T(Q) k k = CkYX + ClCkX and it is very easy to prove by 

standard methods that  ~-(Q) cannot have a Jacobian mate. This concludes the 

proof. 1 

5. S o m e  conjectures  and observat ions  

What properties of Q were used in the proof of Theorem 4.1? In fact we used 

only two facts: 

1. K[Qk(y ) ,  Q~(y)] = K[y], 

2. Resx(Qx, Qy) = ,~ E K*. 

It is a well-known fact (see [4] for example) that if Q is a member of a Jacobian 

pair, then resx(Q~, Qy) = non-zero constant. In the case rn = 3 there is a striking 

similarity between this resultant and de tB = -(Q~o 2 + ~ 1 ~ ¢  lJ which is also a 

non-zero constant. We would like to state the following: 

CONJECTURE: Resx(Q~,Qy) = ade tB,  a ~ 0. 

Suppose now that Res~(Q~, Qy) is a non-zero constant and 

K [ Q m - 2 ( y ) ,  . . ., Qo(y)] = K[y]. 
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These are the only properties of Q used in the proof of case (iii) of Theorem 4.1. 

Are these properties sufficient for the general case? The answer to this question 

is no, as can be easily seen from the following counter-example: 

Q - ~ x m " b y x k q - x ,  m > 3 ,  m - l > k > l .  

The Abhyankar-Moh Theorem played a very important  role in the proof of 

Theorem 4.1. There exists a well-known generalization of the Abhyankar-Moh 

Theorem for embeddings of a line into K r for r > 3 (see [5]). Namely: If 

K [ A I ( y ) , . . . ,  At(y)] = K[y], then there exists an automorphism 7- of K [ z l , . . . ,  z~] 

such that  ~'(zl) = Pi ( z l , . . . , z~ ) ,  1 <_ i <_ r, and P~(0 , . . . ,0 ,  y) = A~(y). 

Unfortunately, there are no simple relations between the degrees of A~'s if r > 3. 

So, the question arises of how to use this generalization of the Abhyankar-Moh 

Theorem for the proof of the general case of the Jacobian Conjecture for K[x, y] 

in a manner similar to Theorem 4.1. 
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